Pre-training Neural Networks with Human Demonstrations for Deep Reinforcement Learning
نویسندگان
چکیده
Deep reinforcement learning (deep RL) has achieved superior performance in complex sequential tasks by using a deep neural network as its function approximator and by learning directly from raw images. A drawback of using raw images is that deep RL must learn the state feature representation from the raw images in addition to learning a policy. As a result, deep RL can require a prohibitively large amount of training time and data to reach reasonable performance, making it difficult to use deep RL in real-world applications, especially when data is expensive. In this work, we speed up training by addressing half of what deep RL is trying to solve — learning features. Our approach is to learn some of the important features by pre-training deep RL network’s hidden layers via supervised learning using a small set of human demonstrations. We empirically evaluate our approach using deep Q-network (DQN) and asynchronous advantage actor-critic (A3C) algorithms on the Atari 2600 games of Pong, Freeway, and Beamrider. Our results show that: 1) pre-training with human demonstrations in a supervised learning manner is better at discovering features relative to pre-training naively in DQN, and 2) initializing a deep RL network with a pretrained model provides a significant improvement in training time even when pre-training from a small number of human
منابع مشابه
Deep Reinforcement Learning for Robotic Manipulation
Reinforcement learning holds the promise of enabling autonomous robots to learn large repertoires of behavioral skills with minimal human intervention. However, robotic applications of reinforcement learning often compromise the autonomy of the learning process in favor of achieving training times that are practical for real physical systems. This typically involves introducing hand-engineered ...
متن کاملLearning from Limited Demonstrations in High Dimensional Feature Spaces
Reinforcement learning (RL) has recently gained a lot of popularity partially due to the success of deep Q-learning (DQN) on the Atari suite and AlphaGo. In these online domains DQN-RL performs favorably thanks to its ability to continuously learn at super human speeds. Unfortunately, in many real world applications, such as in robotics, the learning rate is limited due to the speed at which th...
متن کاملCompetitive Multi-agent Inverse Reinforcement Learning with Sub-optimal Demonstrations
This paper considers the problem of inverse reinforcement learning in zero-sum stochastic games when expert demonstrations are known to be not optimal. Compared to previous works that decouple agents in the game by assuming optimality in expert strategies, we introduce a new objective function that directly pits experts against Nash Equilibrium strategies, and we design an algorithm to solve fo...
متن کاملDeep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces
While recent advances in deep reinforcement learning have allowed autonomous learning agents to succeed at a variety of complex tasks, existing algorithms generally require a lot of training data. One way to increase the speed at which agents are able to learn to perform tasks is by leveraging the input of human trainers. Although such input can take many forms, real-time, scalar-valued feedbac...
متن کاملLearning human behaviors from motion capture by adversarial imitation
Rapid progress in deep reinforcement learning has made it increasingly feasible to train controllers for high-dimensional humanoid bodies. However, methods that use pure reinforcement learning with simple reward functions tend to produce non-humanlike and overly stereotyped movement behaviors. In this work, we extend generative adversarial imitation learning to enable training of generic neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.04083 شماره
صفحات -
تاریخ انتشار 2017